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Introduction.

Notations
G Simple Connected graph.

m Number of edges of graph G.

n Number of vertices of graph G.

d(vi) Degree of vertex vi.

dvi Degree of vertex vi.

∆ Maximum degree of graph.

δ Minimum degree of graph.
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Mathematical chemistry
1 Chemical graph theory

1 Topological indices
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Topological index is a numerical value which
associate with a graph structure
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1 Degree Based Indices

2 Distance Based Indices
3 Energy Based Indices

1 Graph Invarients based counting subsets
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Independent edge subsets

A matching of G is a set of disjoint edges in G.

A matching of G is a edge subset in which any two edges
cannot share a common vertex.

Let m(G, k) denotes the number of k−matchings in
G, k ≥ 1
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The simple connected Graph G1
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single-edge sets: 5
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Two-Matchings : 2
(1 red pair and 1 green pair of edges.)
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Independent edge subsets

z(G) =
∑
k≥0

m(G, k),

where m(G, k) denotes the number of k−matchings in
G, k ≥ 1.

m(G, 0) = 1, where the one corresponds to a matching in a
set with zero edges .

z(G1) = 1 + 5 + 2 = 8.
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The quantity z(G) associated with a graph was introduced
to the chemical literature in 1971 by the Japanese chemist
Haruo Hosoya.

Haruo Hosoya

Hosaya Index z(G)
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Independent vertex subsets

Given a graph G, a k−independent set is a set of k
vertices, no two of which are adjacent.

i(G, k) the number of k−independent sets of
G, k ≥ 1.

The empty set is an independent set.

It is both consistent and convenient to define i(G, 0) = 1.

Suresh Elumalai Merrifield-Simmons index of Graphs September 10, 2021 12 / 82



Independent vertex subsets

Given a graph G, a k−independent set is a set of k
vertices, no two of which are adjacent.

i(G, k) the number of k−independent sets of
G, k ≥ 1.

The empty set is an independent set.

It is both consistent and convenient to define i(G, 0) = 1.

Suresh Elumalai Merrifield-Simmons index of Graphs September 10, 2021 12 / 82



Independent vertex subsets

Given a graph G, a k−independent set is a set of k
vertices, no two of which are adjacent.

i(G, k) the number of k−independent sets of
G, k ≥ 1.

The empty set is an independent set.

It is both consistent and convenient to define i(G, 0) = 1.

Suresh Elumalai Merrifield-Simmons index of Graphs September 10, 2021 12 / 82



Independent vertex subsets

Given a graph G, a k−independent set is a set of k
vertices, no two of which are adjacent.

i(G, k) the number of k−independent sets of
G, k ≥ 1.

The empty set is an independent set.

It is both consistent and convenient to define i(G, 0) = 1.

Suresh Elumalai Merrifield-Simmons index of Graphs September 10, 2021 12 / 82



The simple connected Graph G1
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Single vertex set: 4
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Single vertex set: 4
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Independent set of two vertices: 1
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Independent set of two vertices: 1
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Independent set of two vertices: 1
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The total number of independent vertex sets (including the
empty vertex set) of a graph G = (V,E) denoted by i(G).

i(G) = i(G, 0) + i(G, 1) + . . .+ i(G, k)

i(G) =
∑
k≥0

i(G, k)

i(G1) = 1 + 4 + 1 = 6.
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Merrifield-Simmons index

The quantity i(G) associated with a graph was introduced to
the chemical literature in 1980 by the chemists
Richard E. Merrifield and Howard E. Simmons .

Merrifield-Simmons index i(G).
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Merrifield-Simmons index

In 1980, Merrifield and Simmons elaborated a theory aimed
at describing molecular structure by means of finite-set
topology

This was the number of open sets of the finite topology,
which is equal to the number of independent sets of vertices
of the graph corresponding to that topology.

The number of independent sets occurred in this framework
as the number of open sets of a certain finite topology, and
of all the aspects of their theory, it probably received the
most attention.

Suresh Elumalai Merrifield-Simmons index of Graphs September 10, 2021 18 / 82



Merrifield-Simmons index

In 1980, Merrifield and Simmons elaborated a theory aimed
at describing molecular structure by means of finite-set
topology

This was the number of open sets of the finite topology,
which is equal to the number of independent sets of vertices
of the graph corresponding to that topology.

The number of independent sets occurred in this framework
as the number of open sets of a certain finite topology, and
of all the aspects of their theory, it probably received the
most attention.

Suresh Elumalai Merrifield-Simmons index of Graphs September 10, 2021 18 / 82



Merrifield-Simmons index

In 1980, Merrifield and Simmons elaborated a theory aimed
at describing molecular structure by means of finite-set
topology

This was the number of open sets of the finite topology,
which is equal to the number of independent sets of vertices
of the graph corresponding to that topology.

The number of independent sets occurred in this framework
as the number of open sets of a certain finite topology, and
of all the aspects of their theory, it probably received the
most attention.

Suresh Elumalai Merrifield-Simmons index of Graphs September 10, 2021 18 / 82



Topological Indices

In chemical literature, the total number of the independent
sets of graphs i(G) is referred to as the Merrifield-Simmons
index.

In chemical literature, the total number of the matchings of
graphs z(G) is referred to as the Hosaya index.
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3 vertices

i(A) = 1 + 3 + 1 = 5 i(B) = 1 + 3 = 4
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Simple connected graph G1 on 15 vertices.
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Complete Graphs Kn.
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Complete Graph K6.

i(K6) = 7
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Complete Graph K6.

i(K6) = 7
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Complete Graph K6 − e.

i(K6 − e) = 8
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Complete Graph6 K6 − 2e.

i(K6 − 2e) = 9
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Complete Graph K6 − 3e.

i(K6 − 2e) = 11

Suresh Elumalai Merrifield-Simmons index of Graphs September 10, 2021 26 / 82



Complete Graph K6 − 3e.

i(K6 − 2e) = 11

Suresh Elumalai Merrifield-Simmons index of Graphs September 10, 2021 26 / 82



Suresh Elumalai Merrifield-Simmons index of Graphs September 10, 2021 27 / 82



i(E6) = 1 + 6C1 + 6C2 + 6C3 + 6C4 + 6C5 + 6C6

= 1 + 6 + 15 + 20 + 15 + 6 + 1

= 64
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Observation: If edges are removed from a graph,

then the Merrifield- Simmons index i(G)

increases.

Lemma 1

Let G1 and G2 be two graphs. If G1 can be

obtained from G2 by deleting some edges, then

i(G2) < i(G1).
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For any simple graph G.

Theorem 2

For every graph G with n vertices, we have

n + 1 = i(Kn) ≤ i(G) ≤ i(En) = 2n,

equality in the first inequality only holds if G is

complete, and equality in the second inequality

only holds if G is edgeless.
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If G is a simple connected graph.

If G is a simple connected graph, then

?? ≤ i(G) ≤??
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Let G be a simple connected graph on n vertices and m

edges. Then

n− 1 ≤ m ≤ n(n− 1)
2

Complete graph Kn → Tree Tn

n + 1 = i(Kn) ≤ i(G) ≤ i(Tn)
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Trees on 6 Vertices
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H. Prodinger and R. F. Tichy, Fibonacci numbers of graphs, The Fibonacci
Quarterly, 20(1) (1982) 16-21.
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Fibonacci Number Values
F0 1
F1 1
F2 2
F3 3
F4 5
F5 8
F6 13
F7 21
F8 34
F9 55
F10 89

Fn = Fn−1 + Fn−2
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Construct the total number of subsets of {1, . . . , n} such that no two elements
are adjacent are:

{1} := {φ, {1}}Count : 2

{1, 2} :=

{
φ
{1} , {2}

}
Count : 3

{1, 2, 3} :=


φ
{1} , {2} , {3}
{1, 3}

Count : 5

{1, 2, 3, 4} :=


φ
{1} , {2} , {3} , {4}
{1, 3} , {2, 4} , {1, 4}

Count : 8

{1, 2, 3, 4, 5} :=


φ
{1} , {2} , {3} , {4} , {5} ,
{1, 3} , {1, 4} , {1, 5} , {2, 4} , {2, 5} , {3, 5}
{1, 3, 5}

Count : 13
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Path
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Chemical graph
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Fn Values i(G) Values
F0 1
F1 1
F2 2 i(P1) 2
F3 3 i(P2) 3
F4 5 i(P3) 5
F5 8 i(P4) 8
F6 13 i(P5) 13
F7 21 i(P6) 21
F8 34 i(P7) 34

i(Pn) = Fn+1
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S1 S2 S3 S4 S5 S6

Figure : Examples for the star Sn
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i(Sn) = 1 + n + (n− 1)C2 + (n− 1)C3 + . . .+ (n− 1)Cn−1

i(Sn) = 1 + 1 + (n− 1)C1 + (n− 1)C2 + (n− 1)C3 + . . .+ (n− 1)Cn−1

i(Sn) = 1 + 2n−1

We Know that. nC0 + nC1 + nC2 + . . .+ nCn = 2n
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The Fibonacci number F(Sn) can be computed by counting
the number of admissible vertex subsets (they do not
contain two adjacent vertices) containing the vertex n or not
containing n. Thus

F(Sn) = 1 + 2n−1.

i(Sn) = 1 + 2n−1.
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H. Prodinger and R. F. Tichy, 1982

Theorem 3

For every tree T with n vertices, we have

Fn+1 = i(Pn) ≤ i(T) ≤ i(Sn) = 2n−1 + 1,

with right equality holds if and only if T is a star Sn and the

left equality holds if and only if T is a path Pn.
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If G is a simple connected graph.

If G is a simple connected graph, then

?? ≤ i(G) ≤??

n + 1 = i(Kn) ≤ i(G) ≤ i(Sn) = 1 + 2n−1.
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If G is a simple connected graph.

Theorem 4

Let G be a simple connected graph, then

n + 1 = i(Kn) ≤ i(G) ≤ i(Sn) = 1 + 2n−1.

Equality in the first inequality holds if and only if G ∼= Kn

and the equalilty in the second inequality holds if and only

if Sn.
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Simple connected graph G1 on 15 vertices.

i(G1) =???.
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Gutman and Polansky 1986

I. Gutman, O.E. Polansky, Mathematical Concept in Organic Chemistry,
Springer, Berlin, 1986.

Lemma 5

Let G = (V, E) be a graph.

(i) If uv ∈ E(G), then i(G) = i(G− uv)− i
(

G− {N[u] ∪ N[v]}
)
.

(ii) If v ∈ V(G), then i(G) = i(G− v) + i(G− N[v]).

(iii) If G1, G2, . . . , Gt are the connected components of the graph G, then

i(G) =

t∏
j=1

i(Gj).
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In chemical graph theory, the molecular structure of a compound is
often presented with a graph, where the atoms are represented by
vertices and bonds are represented by edges.
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Graph representation for the above chemical structure

Blue refers Carbon atoms, Red refers Hydrogen atoms.

Molecular Graph
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Molecular Graph
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Naphthalene Balls Naphthalene Structure
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Naphthalene Structure Chemical graph
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Chemical graph

Naphthalene N.

Calculate i(N)
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Chemical graph
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Chemical graph

N − {4}

i(N − {4}) = i(P9) = F10 = 89
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Chemical graph
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Chemical graph

N − {3, 4, 6, 10}

i(N − {3, 4, 6, 10}) = i(P3) ∗ i(P3) = F4 ∗ F4 = 5 ∗ 5 = 25
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i(N) = i(N − {4}) + i(N − {Neighbors of 4})

i(N) = i(N − {4}) + i(N − {3, 4, 6, 10}) = 89 + 25 = 114

i(N) = 114
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H.Hua, X. Xu, H. Wang, Unicyclic Graphs with Given Number of Cut
Vertices and the Maximal Merrifield - Simmons Index, Filomat 28:3
(2014) 451-461.

Theorem 6

Let T be a tree, not isomorphic to Sn, with n vertices. Then

i(T) ≤ 3(2n−3) + 2,

with equality if and only if T ∼= D1,n−3.

Double Star Dα,β.

Suresh Elumalai Merrifield-Simmons index of Graphs September 10, 2021 60 / 82



H.Hua, X. Xu, H. Wang, Unicyclic Graphs with Given Number of Cut
Vertices and the Maximal Merrifield - Simmons Index, Filomat 28:3
(2014) 451-461.

Theorem 6

Let T be a tree, not isomorphic to Sn, with n vertices. Then

i(T) ≤ 3(2n−3) + 2,

with equality if and only if T ∼= D1,n−3.

Double Star Dα,β.
Suresh Elumalai Merrifield-Simmons index of Graphs September 10, 2021 60 / 82



Y. Hu, Y. Wei, The number of independent sets in a connected
graph and its complement, The Art of Discrete and Applied
Mathematics 1 (2018) 1-10.

Theorem 7

Let T be a tree of order n with connected complement T,

then

i(T) + i(T) ≥ 2n + Fn+1

with equality if and only if T ∼= Pn, where Fn+1 is the

Fibonacci Number.
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Theorem 8

Let T be a tree of order n with connected complement T,

then

i(T) + i(T) ≤ 2 + 2n + 2nn−3 + 2n−2

with equality if and only if T ∼= D1,n−3.
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Unicyclic Graphs

Theorem 9

If G is a unicyclic graph of order n, then

i(G) ≥ Fn−1 + Fn+1

and equality occurs if and only if G ∼= Cn or G ∼= Ln,3.

Ln,3
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Unicyclic Graphs

Theorem 10

If G is a unicyclic graph of order n, then

i(G) ≤ 3 ∗ 2n−3 + 1

and equality holds if and only if G is a C4 or G ∼= S+
n .

Suresh Elumalai Merrifield-Simmons index of Graphs September 10, 2021 64 / 82



Unicyclic Graphs

Theorem 10

If G is a unicyclic graph of order n, then

i(G) ≤ 3 ∗ 2n−3 + 1

and equality holds if and only if G is a C4 or G ∼= S+
n .

Suresh Elumalai Merrifield-Simmons index of Graphs September 10, 2021 64 / 82



Bicyclic Graphs

Theorem 11

If G is a bicyclic graph of order n, then

i(G) ≤ 5 ∗ 2n−4 + 1

, equality holds if and only if G ∼= B1.

Suresh Elumalai Merrifield-Simmons index of Graphs September 10, 2021 65 / 82



Bicyclic Graphs

Theorem 11

If G is a bicyclic graph of order n, then

i(G) ≤ 5 ∗ 2n−4 + 1

, equality holds if and only if G ∼= B1.

Suresh Elumalai Merrifield-Simmons index of Graphs September 10, 2021 65 / 82



Bicyclic Graphs

Theorem 12

If G is a bicyclic graph of order n, then

i(G) ≥ 5 ∗ Fn−2

, equality holds if and only if G ∼= B2.
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Transformation I

Let G1 and G2 be the graphs in Transformation I. Then i(G1) > i(G2).
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Transformation II

Let A1,A2 and A3 be the graphs in Transformation II. Then
i(A1) > i(A2) or i(A1) > i(A3).
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Transformation III

Let B1 and B2 be the graphs in Transformation III. Then i(B1) > i(B2)
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Transformation IV

Let D1 and D2 be the graphs in Transformation IV. Then i(D1) > i(D2).
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Transformation V

Let E1 and E2 be the graphs in Transformation V. Then i(E1) > i(E2).
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Results connecting i(G) with other distance based topological indices.

H. Hua, X. Hua, H. Wang, Further results on the Merrifield-Simmons
index, Discrete Applied Mathematics, 283 (2020) 231-241.

K. C. Das, S. Elumalai, A. Ghosh, and T. Mansour, On conjecture of
MerrifieldSimmons index, Discrete Applied Mathematics 288 (2021)
211-217.

H. Hua, M. Wang, On the Merrifield-Simmons Index and some
Wiener-Type Indices, MATCH Commun. Math. Comput. Chem. 85 (2021)
131-146.
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Let G be a simple connected graph of order n with vertex
set V(G) = {v1, v2, ..., vn} and edge set E(G). Let
d1 ≥ d2 ≥ d3 ≥ ... ≥ dn be the degree sequence of G.

Graph Matrices: Adjacency matrix:

A(G) := [aij]n×n , aij =

{
1 if vivj ∈ E(G)

0 otherwise

Degree diagonal matrix: D(G) := diag(d1, d2, ..., dn).

Laplacian Matrix: L(G) := D(G)− A(G).

Signless Laplacian Matrix: Q(G) := D(G) + A(G).
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Adjacency spectrum: λ1 ≥ λ2 ≥ ... ≥ λn.

Laplacian spectrum : µ1 ≥ µ2 ≥ ... ≥ µn = 0.
Signless Laplacian spectrum : q1 ≥ q2 ≥ ... ≥ qn.
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Milan Randić

Randić Index

In 1975, M. Randić introduces the connectivity index, defined by

R(G) =
∑

uv∈E(G)

1√
d(u)d(v)

.
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P. Hansen, C. Lucas, Bounds and conjectures for the signless Laplacian
index of graphs, Linear Algebra Appl. 432 (2010) 3319-3336.

Conjectures

Let G be a connected graph on n ≥ 4 vertices with signless Laplacian index q1

and Randić index R. Then
Conjecture 1

q1 − R ≤ 3
2

(n− 2)

equality holds if and only if G ∼= Kn.

Conjecture 2

q1

R
≤


4n− 4

n
, 4 ≤ n ≤ 12,

n√
n− 1

, n ≥ 13,

equality holds if and only if G ∼= Kn, for 4 ≤ n ≤ 12 and for Sn for n ≥ 13.
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Proofs supporting Conjecture 1

H. Deng, S. Balachandran, S. Ayyaswamy, On two conjectures of Randić
index and the largest signless Laplacian eigenvalue of graphs, J. Math.
Anal. Appl. 411 (1) (2014) 196-200.

Proofs supporting Conjecture 2

B. Ning, X. Peng The Randić index and signless Laplacian spectral radius
of graphs, Discrete Mathematics 342 (2019) 643 - 653.
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B. Ning, X. Peng The Randić index and signless Laplacian spectral radius
of graphs, Discrete Mathematics 342 (2019) 643 - 653.

Suresh Elumalai Merrifield-Simmons index of Graphs September 10, 2021 77 / 82



Boris Furtula

Geometric-Arithmetic Index
In 2009, Vukičević and Furtula introduced a new class of topological
index, named the geometric-arithmetic index, defined by

GA(G) =
∑

uv∈E(G)

2
√

d(u)d(v)
d(u) + d(v)

.
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M. Aouchiche, P. Hansen, Comparing the GeometricArithmetic Index and
the Spectral Radius of Graphs, MATCH Commun. Math. Comput. Chem.
84 (2020) 473-482.

Conjecture

For any connected graph G on n ≥ 8 vertices with spectral radius λ1 and
geometric-arithmetic index GA, Randić index R,

GA
λ2

1
≤ R

2
,

with equality if and only if G is the cycle Cn.
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Z. Du, B. Zhou, On Quotient of Geometric-Arithmetic Index and Square
of Spectral Radius, MATCH Commun. Math. Comput. Chem. 85 (2021)
77-86.

Theorem 13

Let r ≥ 2 be a fixed integer, and xr the largest positive root of the equation

(x− 3 + 2
√

2) cosr π

x + 1
= x− 3 +

4
√

2
3

For any connected graph G on n > xr vertices, we have

GA
λr

1
≤ R

2r−1 ,

with equality if and only if G is the cycle Cn.

Set r = 2. Note that x2 ≈ 7.66251. It is then reduced to the solution of the
conjecture.
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Relation between i(G) with λ1, µ1, or q1 is still unexplored.
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